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Model Presentation and Predictions

Competitive interactions in nature are often indirect and subtle, and may be
mediated through populations of resources. In contrast, predation is a direct
and conspicuous ecological interaction. The image of a wolf pack bringing
down a moose, or a spider eating a fly evokes Tennyson’s description of

“nature red in tooth and claw.” Seed predators, such as finches and harvester
ants, are less dramatic in their feeding, but may be equally effective at control-
ling plant populations. Other animals do not consume their prey entirely.
Parasites require that their hosts survive long enough for the parasite to repro-
duce, and many herbivores graze on plants without killing them. In all of these
interactions, we can recognize a population of “predators” that benefits from
feeding, and a population of “victims” that suffers. In this chapter, we will
develop some simple models to give us insight into the dynamics of predation.
As In our analysis of competition, the predation equations were first derived
independently by Alfred J. Lotka and Vito Volterra. Volterra’s interest in the
subject stemmed from his daughter’s fiancé, a fisheries biologist who was try-
ing to understand fluctuations in the catch of predaceous fish (Kingsland 1985).

MODELING PREY POPULATION GROWTH

We will use the symbol P to denote the predator population and the symbol
V'to denote the victim or prey population. The growth of the victim popula-
tion will be some function, f, of the numbers of both victims and predators:

CQ{ f(v,P) Expression 6.1
Suppose that the predators are the only force limiting the growth of the vic-
tim population. In other words, if the predators are absent, the victim popu-
lation increases exponentially:

% =rV Expression 6.2
with 7 representing the intrinsic rate of increase (see Chapter 1). This potential
for increase of the victim population is offset by losses that occur when

predators are present:

d : rV ocVP , Equatmn 1
The term after the minus sign says that losses to predation are proportional to
the product of predator and victim numbers. This is equivalent to a chemical
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reaction in which the reaction rates are proportional to the concentrations of
molecules. If predators and victims move randomly through the environ-
ment, then their encounter rate is proportional to the product of their abun-
dances. Note that we have now started recycling symbols: ¢ is not the com-
petition coefficient from Chapter 5! Instead, here o measures capture

efficiency, the effect of a predator on the per capita growth rate (% il—‘t/) of
the victim population.” The units of o are [victims/(victim « time « predator)].
The larger o is, the more the per capita growth rate of the victim population is
depressed by the addition of a single predator. A filter-feeding baleen whale
would have a large o, because a single whale can consume millions of plank-
ton. In contrast, a web-building spider might have a fairly low ¢ if the addi-
tion of a single web does not greatly depress prey populations. The product
aV is the functional response of the predator—the rate of victim capture by a
predator as a function of victim abundance (Solomon 1949). Later in this chap-
ter, we will derive some more complicated expressions for the functional
response, but for now we will represent it is as a simple product of victim
abundance (V) and capture efficiency (). Before we explore the solutions to
the equation for victim growth, we will develop an analogous equation to
describe the growth of the predator population.

MODELING PREDATOR POPULATION GROWTH

The growth of the predator population is affected by the numbers of both
predators and victims:

% =¢(P,V) Expression 6.3
We use the symbol g for this function to distinguish it from the function f that
is used for the victim population in Expression 6.1.

The predator we are modeling is an extreme specialist. It will feed only on
the victim population and has no alternative source of prey. Consequently,
if the victim population is absent, the predator population declines
exponentially:

%_1; =—gP Expression 6.4
where g is the per capita death rate. (This is equivalent to the death rate d
from the exponential growth model described in Chapter 1; we have changed
symbols here to avoid confusion.)

*“This same capture efficiency appeared as the interaction coefficient 6 in Equation 5.8, where it
represented losses to predation in a pair of competitors engaging in intraguild predation.meem.
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Positive growth occurs only when the victim population is present:
‘ %zﬁVP—qP . - Equatibn 62

Here BVP indicates random encounters of predators and victims. 3 is a mea-
sure of conversion efficiency*—the ability of predators to convert each new
victim into additional per capita growth rate for the predator population

P dt
to be high when a single prey item is particularly valuable, such as a moose
that is captured by wolves. In contrast, f will be low when a single prey item
does not contribute much to growth of the predator population; think of a
single seed consumed by a granivorous bird. SV reflects the numerical
response of the predator population—the per capita growth rate of the preda-
tor population as a function of victim abundance.

(i@). Its units are [predators/(predator « time » victim)]. We expect f3

EQUILIBRIUM SOLUTIONS

To find the equilibrium for the victim and predator populations, we set each
equation equal to zero and solve for population size. Beginning with
Equation 6.1:

0=rV-aVP Expression 6.5
rV=aVP Expression 6.6
r=oP Expression 6.7

. Equation63

Although we tried to solve for the victim equilibrium, the solution is in terms
of P, the predator population! The important result is that a specific number
of predators (P) will maintain the victim population at zero growth. This
predator level is determined by the ratio of the growth rate of the victims (r)
to the capture efficiency of the predators (r). The faster the growth rate of the

*Again, this conversion efficiency appeared as the interaction coefficient yin Equation 5.7 of
Chapter 5, where it represented gains from predation in a pair of competitors engaging in
intraguild predation.
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victim population, the more predators are needed to keep the victim popula-
tion in check. Conversely, the higher the capture efficiency, the fewer preda-
tors needed for control.

Solving the equilibrium for the predators (Equation 6.2) yields an expres-
sion in terms of the victim population size:

0=BVP-qP Expression 6.8
BVP =gP Expression 6.9
BV =g Expression 6.10

Thus, the predator population is controlled by a fixed number of victims ).
The greater the death rate of the predators (q), the more victims needed to
keep the predator population from declining. Conversely, the greater the
conversion efficiency of predators (), the fewer victims needed to maintain
the predators at equilibrium. Because Equations 6.3 and 6.4 give the condi-
tions for zero growth, they represent the victim and predator isoclines,
respectively.

GRAPHICAL SOLUTIONS TO THE LOTKA-VOLTERRA PREDATION MODEL

As in our analysis of the competition model (Chapter 5), we can plot the iso-
clines for each species in state space to evaluate the joint equilibrium. Plotting
the victim population on the x axis yields a horizontal victim isocline, repre-
senting the number of predators needed to hold the victim population in
check. If the predator population is less than this number, the victim popula-
tion can increase in size, represented by horizontal arrows pointing to the
right. Conversely, if the predator population is above the victim isocline, the
victim population declines, represented by horizontal arrows pointing to the
left (Figure 6.1).

Similar reasoning applies to the analysis of the predator isocline. This iso-
cline is a vertical line, representing a critical size of the victim population. To
the left of the isocline, there are not enough victims to support the predator
population. In this region of the state-space graph, the predator population
declines, represented by downward-pointing vertical arrows. To the right of
the isocline, there is an excess supply of victims, and the predator population
increases, represented by upward-pointing vertical arrows (Figure 6.2).
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Figure 6.1 The victim isocline in state space. The Lotka~Volterra predation model
predicts a critical number of predators (r/ ) that controls the victim population. If
there are fewer predators than this, the victim population increases (right-pointing
arrows). If there are more predators, the victim population decreases (left-pointing
arrows). The victim population has zero growth when P = r/a..
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Figure 6.2 The predator isocline in state space. The Lotka-Volterra predation model
predicts a critical number of victims (¢/f) that controls the predator population. If
there are fewer victims than this, the predator population decreases (downward-
pointing arrows). If there are more victims, the predator population increases
(upward-pointing arrows). The predator population has zero growth when V= g/8.
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In our analysis of competition models, there were four ways that the pair
of isoclines could be placed in the state-space graph. For the predation model,
there is only one possible pattern: the isoclines cross at 90° angles (Figure 6.3).
However, we will see that the dynamics are more complex than in the com-
petition model.

The predator and victim isoclines divide the state space into four regions.
Beginning in the upper right-hand corner, we are in a region where both
predator and victim are abundant. Because we are to the right of the predator
isocline, prey are abundant enough for the predator to increase. However, we
are above the horizontal victim isocline. Consequently, there are too many
predators, and the victim population declines. The vector of net movement
points towards the upper left-hand quadrant. As the victim abundance con-
tinues to decline, we cross the vertical isocline into the upper left-hand region
of state space.

Now the victim population has declined to the point where the predator
population can no longer increase. Both predator and victim populations
decrease, and the vector moves into the lower left-hand quadrant. In this
region, the predator population continues to decline, but the victim popula-
tion starts to increase again. The net movement is down and to the right, tak-
ing the trajectory into the fourth quadrant. Here, the victim population con-

/1 N

N

NV

Figure 6.3 The dynamics of predator and victim populations in the Lotka—Volterra
model. The vectors indicate the trajectories of the populations in the different
regions of the state space. The populations trace a counterclockwise path that
approximates an ellipse.
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tinues to grow, but it has now become large enough for the predators to also
increase. The system again moves back to the starting point, the upper right-
hand quadrant.

Thus, the predator and victim populations trace an approximate ellipse in
state space. Unless the predator and victim populations are precisely at the
intersection of the isoclines, their trajectories will continue to move in this
counterclockwise ellipse.

How does this ellipse translate into growth curves for the predator and
victim populations? Both populations cycle periodically, increasing and
decreasing smoothly from minimum to maximum. The ellipse indicates that
the peak of the predator population occurs when the victim population is at
its midpoint, and vice versa. In other words, the peaks of the predator and
victim populations are displaced by one-quarter of a cycle (Figure 6.4).

What would happen if the predator and victim populations had a different
starting point in the state space? This would correspond to different initial
abundances of predator and victim, and a new ellipse would be traced. Both
populations would again exhibit cycles, although with a different amplitude.
The closer the ellipse is to the isocline intersection, the smaller the amplitude
of the predator and victim cycles. Thus, the Lotka—Volterra cycles are neu-
trally stable—the amplitudes are determined solely by the initial conditions.

There are only two exceptions to population cycling: (1) if the victim and
predator populations are precisely at the isocline intersection, they will not

”
<=~ Predators

Time (t)

Figure 6.4 Cycles of predators and victims in the Lotka-Volterra model. Each popu-
lation cycles with an amplitude that is determined by the starting population sizes
and a period of approximately 277/V/rq. The predator and victim populations are
displaced by one-quarter of a cycle, so that the predator population peaks when the
victim population has declined to half its maximum, and vice versa.
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change, although if they are displaced any distance from this point, they will
begin cycling; or (2) if the starting point of the ellipse is too extreme, it will hit
one of the axes of the state-space graph. In this case, the amplitude of the
cycle is so large that either predator or the victim population will crash.
Although the amplitude of the cycle is determined by the initial population
sizes, the period of the cycle (C) is approximately

e an

Thus, the greater the prey growth rate (r) and/or the predator death rate (g),
the faster the populations cycle between high and low values. The essential
feature of the Lotka—Volterra predation model is that the predator and vic-
tim populations cycle because they reciprocally control one another’s growth.

Model Assumptions

The Lotka-Volterra predation model carries with it the standard assumptions
of no immigration, no age or genetic structure, and no time lags. In addition,
the model makes the following assumptions about predators, victims, and
the environment:

v Growth of the victim population is lrmlted anly by predatmn Equatzonﬁf :
6.1 shows that the victim popula’aon grows exponenﬁaliy in the absencef
of the predator ; - ; ; .

v The predator is a spec:alist that can pers:st only i the wctlm popu!atlon' .
is present. Equation 6.2 shows that the predator popula’non Wﬂl starve
in the absence of the victim. -

v Indlwdual predators can consume an mfm:te number of v:cttms ‘
_ Because the horizontal victim isocline (4V /dt = 0) 1mphes a consta P

_number of predators, each predator must be able to increase its con-

~ sumption as the victim population i mcreases in size. An mflmte capacfcyi .
for consuming prey also nnphes that there is no mterference or coopera— “

tion among predators ~ ‘ - -

v Predator and victim encounter one another randomly inan homog : :
environment. The interaction terms (VP and BVP) imply that preda-
tors and victims move randomly through the environment, and that vic- ‘
tims do not have spatlal or temporal refuges for avonimg predators
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Model Variations

The unique prediction of the Lotka—Volterra predation model is cycles of
predator and victim populations. However, these cycles are very sensitive to
the restrictive assumptions and linear isoclines of the model. In the follow-
ing sections, we will incorporate more realistic assumptions about predators
and victims that bend the isoclines and produce other dynamics. We will not
solve the equations for these more complex models, although we will ana-
lyze their behavior with state-space graphs.

INCORPORATING A VICTIM CARRYING CAPACITY

The victim isocline tells us how many predators are needed to hold the vic-
tim population in check. Notice that as we move to the right in the state-
space graph (Figure 6.1), the same number of predators will control the vic-
tim population. This is not realistic. We expect that as the victim population
becomes more crowded, it will start to be limited by other resources that
have nothing to do with predators. We can modify the victim isocline to
incorporate a victim carrying capacity by including another term with a new
constant c:

Now the growth of the victim population is decreased by the presence of
predators (aVP) and by its own abundance (cV?). When graphed in the state
space, this new isocline is a straight line with a negative slope, in contrast to
the horizontal victim isocline of the simple Lotka—Volterra model. The new
isocline crosses the x axis at r/c, which is the maximum population size
achieved by the victims when no predators are present. In the absence of
predators, Equation 6.6 is equivalent to a model of logistic population growth
with a carrying capacity K = r/c (Equation 2.1).

How does the interaction of predator and victim change when the victim
population is limited by its own carrying capacity? Figure 6.5 shows that the
trajectory for the predator and victim populations spirals inwards to the equi-
librium intersection. This is a stable equilibrium point, and the equilibrium
abundance for the victim population is lower when the predators are present
than when they are absent. The presence of a victim carrying capacity stabi-
lizes the predator—prey interaction. This makes intuitive sense—if the victims
are limited by factors other than their predators, then there would be less of a
tendency for the two populations to cycle.
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Figure 6.5 The effect of a victim carrying capacity on the victim isocline. The victim
isocline slopes downward with a carrying capacity incorporated. The intersection
with the vertical predator isocline forms a stable equilibrium point.

MODIFYING THE FUNCTIONAL RESPONSE

One of the most unrealistic assumptions of the Lotka-Volterra predation
model is that individual predators can always increase their prey consump-
tion as the victim population increases. This type of foraging is illustrated in
a graph of the functional response (Figure 6.6), which plots the rate of prey

Number of prey eaten/
predator e time (n/t)

1 I:kﬂ' —————————————————————————————————
/h il
1/2h ¢ =--%
i
&
1/oh=D

Victim abundance

Figure 6.6 The functional response of predators is the feeding rate per predator as a
function of prey abundance. The shape of these curves depends on the capture effi-
ciency (@), the maximum predator feeding rate (k), and the victim abundance for
which the predator feeding rate is half of the maximum (D).
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captured per individual predator (n/t) as a function of prey abundance (V).
The Lotka-Volterra model assumes a Type I functional response, in which the
predator consumes more as prey abundance increases (Holling 1959). The
slope of this curve is ¢, the capture efficiency.

AType I functional response is unrealistic for two reasons. First, predators
will eventually become satiated (stuffed) and stop feeding. Second, even in
the absence of satiation, predators are limited by the handling time (/) needed
to catch and consume each prey item. Consequently, there is a limit to the rate
at which individual predators can process prey.

We can construct a more realistic Type 1l functional response by modeling
the components that contribute to feeding rate (11/1), the rate at which indi-
vidual predators capture prey (Royama 1971). The total amount of time that
a predator spends feeding (t) is the time spent searching for the prey (t;), plus
the time spent “handling” or consuming the prey (f,):

t=1,+1 Expression 6.11

If we let n equal the number of prey items captured in time t and & equal the
handling time per prey item, the total handling time is:

t, =hn Expression 6.12

Similarly, we can derive an expression for the search time. The total number
of prey captured by a predator (1) is simply the product of the victim abun-
dance (V), the capture efficiency (o), and the total search time (f;):

n=Vaot, Expression 6.13

We can rearrange this to give us an expression for the search time:

t = 5{% Expression 6.14
Substituting Expressions 6.12 and 6.14 into 6.11, we have:
t= % +hn Expression 6.15
Multiplying the second term by (aV/oV) gives:
_n_,aVhn .
t= VT oV Expression 6.16
t= n(l;_o‘é/Wl_) Expression 6.17

Finally, this can be rearranged to give us an expression for the feeding rate (1/¢):
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e

EquatiOn 67

Equation 6.7 describes the feeding rate per predator as a function of the cap-
ture efficiency, the victim abundance, and the handling time. Note that if the
victim abundance is very low, the term aVh in the denominator is small, so
the feeding rate is close to aV, as in the simple Lotka—Volterra model. But as
the victim abundance increases, the feeding rate approaches a saturation
value of 1/h. This value represents the maximum feeding rate that the preda-
tor can achieve because of the constraints of handling time. Equation 6.7 is
sometimes referred to as the “disc equation” because it fits data from an
experiment in which human subjects were blindfolded and required to find
and pick up small discs of sandpaper scattered on a flat surface.

We can simplify Equation 6.7 somewhat by letting k = 1/k, the maximum
feeding rate. We can also define the constant D as 1/ach. This value turns out
to be the half-saturation constant, which is the abundance of prey at which
the feeding rate is half-maximal. If we first multiply the numerator and
denominator of Equation 6.7 by 1/cth, we have:

av
h
n/t= —f—m Expression 6.18
ah  oh

Substituting in the two new constants k and D yields:

, Equatwn 68

This Type II functional response increases to a maximum and constant rate
of prey consumption per predator (k). The half-saturation constant (D) con-
trols the rate of increase to this maximum. This equation is identical to the
Michaelis-Menten equation of enzyme kinetics (Real 1977).

Finally, a Type I functional response can be described by:

- sz . Tauatiened
gy .
For a Type III functional response, the feeding rate also reaches an asymptote
at k, but the curve has a sigmoid shape, similar to the logistic curve (see
Chapter 2). Consequently, the feeding rate is accelerated at low prey density,
but decreases at high prey density as the asymptote is reached (Figure 6.7).



138 CHAPTER 6: PREDATION

IT

11T

Number of prey eaten per predator

Victim abundance

Figure 6.7 Type L, Type II, and Type I functional responses.

This functional response can occur if predators switch to prey items that
become more common, if they develop a search image that increases capture
efficiency as victim abundance increases, or if there are fixed and variable
costs to foraging (Holling 1959, Mitchell and Brown 1990).

The functional response has important consequences for the ability of
predators to control victim populations. Figure 6.8 shows the proportion of
the prey population that is consumed by an individual predator as victim
abundance increases. For the Type I response of the simple Lotka—Volterra
model, this proportion remains a constant, because each predator increases its

It

Proportion of victim
population consumed

I

Victim abundance

Figure 6.8 The proportion of the victim population consumed by an individual
predator as a function of victim abundance.
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individual feeding as victim abundance increases. For the Type II response,
the proportion decreases steadily because each predator can only process prey
at a maximum rate k. The Type III response shows an initial increase because
of the accelerated feeding rate, but this quickly decreases and converges on
the Type II curve. These curves show that, at high victim abundance, preda-
tors with a Type II or Type Il response may not be able to effectively control
victim populations. Control is possible with the Type Ill response, but only at
relatively low victim abundance. In contrast, the Type I functional response
ensures effective control over all levels of victim abundance.

Incorporating a Type II or Type III functional response into the equation
for the victim growth rate gives:

Figure 6.9 shows that the isoclines for these growth equations increase in the
state space, with an upward swing at low victim abundance for the Type III

Number of predators (P)

Number of victims (V)

Figure 6.9 Victim isoclines incorporating a Type II or a Type Il functional response.
The intersection of an increasing victim isocline with a vertical predator isocline
generates an unstable equilibrium point.
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functional response. Because each predator is limited by a maximum con-
sumption rate, more predators are required to hold large victim populations at
zero growth. When these increasing victim isoclines intersect a vertical preda-
tor isocline, the equilibrium is unstable, and the predator and victim will not
coexist.

THE PARADOX OF ENRICHMENT

The victim isocline may also increase because of an Allee effect (see Chapter
2) for the victim population. If larger victim populations are more effective
at reproducing, obtaining food, or defending themselves from predators,
more predators would be needed to control the prey population. Because of a
victim carrying capacity, predator functional response, Allee effects, and a
variety of other reasons, the victim isocline may have a hump in the middle
(Rosenzweig and MacArthur 1963), turning downward at both low and high
prey densities.

- How does this more realistic victim isocline affect predator—prey dynam-
ics? The answer depends on precisely where the vertical predator isocline
intersects the victim isocline. If the intersection is at the peak of the victim
isocline, the predator and victim populations will cycle as in the simple
Lotka—Volterra model (Figure 6.10a). However, if the predator isocline cross-
es to the right of the hump, the predator and victim populations converge on
a stable equilibrium point, without population cycles (Figure 6.10b). In this
case, the predator is relatively inefficient. Thus, from Equation 6.4, the preda-
tor population has a relatively high death rate () and/or a low conversion
efficiency (B). In contrast, if the predator is relatively efficient (low g and/or
high f3), the isoclines intersect to the left of the hump. In this case, the equi-
librium is unstable. The predator population will overexploit the victim pop-
ulation, drive it to extinction, and then starve (Figure 6.10c).

This instability due to a relatively efficient predator has been termed the
paradox of enrichment (Rosenzweig 1971). The paradox may explain why
some artificially enriched agricultural systems are vulnerable to pest out-
breaks. Suppose the “victim” population is a crop plant that coexists in a sta-
ble equilibrium with a “predator” population of an herbivorous insect. If the
productivity of the crop plant is increased with fertilizers, the victim isocline

Figure 6.10 (a) Predator—prey cycles with a humped prey isocline. As in the Lotka-
Volterra model, the predator and victim populations cycle as long as the predator
and victim isoclines are perpendicular where they intersect. (b) If the predator is rel-
atively inefficient, the predator isocline intersects to the right of the peak of the vic-
tim isocline. In this case, predator and victim coexist in a stable equilibrium. (c) If
the predator is relatively efficient, the predator isocline intersects to the left of the
peak of the victim isocline. In this case, the predator overexploits the prey popula-
tion, drives it to extinction, and starves.



141

MODEL VARIATIONS

Number of victims (V)

Number of victims (V)

(@)

() sx101epa1d Jo TqUNN

(b)

() sxorepaid Jo aqump]

(©

(g) sxoyepaid jo roqunp]

Number of victims (V)



142 CHAPTER 6: PREDATION

1
i
I
i
1
i
1
o i
= i
E 1
g 1
= 1
<
ke 1
@ 1
=
o i
e 1
e i
b
£ i
g 1
= 1
Z. 1
%.W
1 s
i
! \a
i
L & ®
K K

Number of victims (V)

Figure 6.11 The paradox of enrichment. If the victim population has its carrying
capacity enhanced from K to K’, the system moves from a stable equilibrium to over-
exploitation by the predator.

may shift to the right to a new, higher carrying capacity (Figure 6.11). If the
predator isocline remains stationary, the dynamics may shift from a stable
equilibrium to an unstable outbreak of the “pest.” This paradox depends on
the unrealistic assumption of a strictly vertical predator isocline. More realis-
tic predator isoclines, described later in this chapter, may enhance stability of
predator and prey over a wider range of victim abundances (Berryman 1992).

INCORPORATING OTHER FACTORS IN THE VICTIM ISOCLINE

The victim isocline may also turn upward at low victim abundance, generat-
ing different population dynamics. There are at least three reasons for an
upturn of the victim isocline. First, the isocline will turn up if there is a fixed
number of victim refuges that are secure from predators. For example, fish
that live in rock crevices and songbirds that establish territories in areas pro-
tected by cover have spatial refuges from predation. In this case, no matter
how large the predator population gets, the victim population can always per-
sist at low abundance in the refuges. Second, the victim isocline may turn
upwards if there is a constant number of victim immigrants that arrive each
generation. With immigration, the victim population always has the potential
to increase at low numbers. Finally, the isocline may turn upward at low vic-
tim-abundance because of a Type III functional response, as explained earlier.
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Number of predators (P)

Number of victims (V)

Figure 6.12 Cycling of predator and victim populations because of victim refuges. If
there are spatial refuges from predation, the victim isocline becomes vertical at low
victim abundance. In this case, the efficient predator cannot overexploit its prey, and
begins to starve once all the victims outside of the refuges have been consumed.
After the predator population declines below a certain point, the victim population
begins to increase again, repeating the cycle.

This upward turn of the victim isocline has the potential to stabilize preda-
tor-prey interactions. For example, suppose that the predator is relatively
efficient, but there is a victim carrying capacity and there are refuges from
predation for the victim population (Figure 6.12). In this case, the predators
quickly consume all the available victims, as in the destabilized case (Figure
6.10c). But once all the victims outside the shelters are consumed, the preda-
tor population begins to starve, and its abundance declines. When the preda-
tor population declines below a certain point, the victim population in the
refuges starts to increase, and the cycle repeats itself. In contrast to the simple
Lotka—Volterra model, these cycles are stable, because no matter what the
starting density, the predator population will eventually consume all the vic-
tims not in refuges, and the cycle will repeat.

MODIFYING THE PREDATOR ISOCLINE

We can also modify the vertical predator isocline to make it more realistic.
These modifications involve changes in the numerical response of Equation
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< Figure 6.13 (a) Effects of carrying capacity on the predator isocline. If the predator
population is limited by factors other than victim abundance, the predator isocline
bends to the right. No matter how large the victim population, the predator popula-
tion becomes limited when it reaches its own carrying capacity. (b) Effects of the
availability of alternative prey on the predator isocline. If the predator is not a spe-
cialist on the victim, the predator population may be able to increase even when the
victim abundance declines to zero. (c) Effects of victim abundance on the predator
isocline. If the size of the victim population acts as a carrying capacity for the preda-
tors, the predator isocline increases with increasing victim abundance.

6.2, which will be described qualitatively. For example, the Lotka—Volterra
predation model assumes that the predator population can always increase in
size if there is an excess of prey available. It is more realistic to suppose that
the predator population has its own carrying capacity, so that its growth is
limited by other factors. A carrying capacity for the predator bends the preda-
tor isocline to the right (Figure 6.13a).

* Another unrealistic assumption of the Lotka-Volterra model is that the
predator is a specialist on the victim. Suppose instead that the predator has
alternative prey sources. Then, when the victim population becomes less
abundant, the predator population can continue to increase by feeding on
other prey items. This will tip the predator isocline towards the horizontal at
low prey abundance (Figure 6.13b). Thus, with alternative prey and a preda-
tor carrying capacity, the predator isocline can shift from vertical to horizon-
tal. As we noted earlier, the availability of other prey may shift the victim iso-
cline as well.

As an intermediate case, suppose that the size of the victim population
determines the size of the predator population. In other words, the victim
population functions as a “carrying capacity” for the predators. In this case,
the predator isocline will be a line with a positive slope, intermediate
between the vertical isocline of the Lotka-Volterra model and the horizontal
isocline of a predator with an independent carrying capacity and alternative
prey (Figure 6.13c).

How will these alterations of the predator isocline affect the stability of the
model? As a general rule, anything that rotates either the predator or the vic-
tim isocline in a clockwise direction will tend to stabilize the interaction,
whereas anything that rotates the isoclines counterclockwise will be destabiliz-
ing. These rotations can be compared to the neutral stability of a horizontal
victim isocline and a vertical predator isocline in the Lotka—Volterra model
(Figure 6.14). For example, giving the victim population a carrying capacity
rotates the victim isocline clockwise, leading to a stable equilibrium on the
right side of the hump (Figure 6.10b). But adding predator satiation rotates
the victim isocline counterclockwise at low abundances, leading to an unsta-
ble equilibrium on the left side of the hump (Figure 6.10c). Rotating the
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Figure 6.14 Effects of rotating the predator and victim isoclines on the stability of
the equilibrium. Relative to the neutral equilibrium of the Lotka—Volterra model,
clockwise rotations of the isoclines lead to more stable equilibria; counterclockwise
rotations lead to less stable equilibria.

predator isocline also increases the stability of the interaction. Whereas a ver-
tical predator isocline generates population cycles in a neutral equilibrium,
an increasing predator isocline generates damped cycles, and a horizontal
predator isocline generates a stable equilibrium point (Figure 6.15).

These geometrical rules make intuitive biological sense. The more inde-
pendent the predator and prey are of one another, the more stable the inter-
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Figure 6.15 Effects of clockwise rotation of the predator isocline. As the predator
isocline is rotated, the dynamics change from cycles with a neutral equilibrium, to
damped cycles, to a stable equilibrium point. Biologically, the three predator iso-
clines correspond to a predator that is a complete specialist on the victim, to one
whose carrying capacity is proportional to victim abundance, to one whose carrying
capacity is independent of victim abundance.
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action. For example, suppose the victim isocline is vertical and the predator
isocline is horizontal (Figure 6.14). In this case, the carrying capacities of the
predator and victim are completely independent of one another, and both
species coexist in a very stable equilibrium. Cycles are difficult to generate
with simple predator-victim models, and require a special dependence of
predator and victim populations upon each other, as in the original Lotka-
Volterra model.

Empirical Examples

POPULATION CYCLES OF HARE AND LYNX

The basic prediction of the Lotka—Volterra model is the regular cycling of
predator and prey populations. The most famous example of this cycling is
the case of the Canada lynx (Lynx canadensis) and its principal prey, the snow-
shoe hare (Lepus americanus). The ecologist Charles Elton analyzed fur-trap-
ping records from the Hudson’s Bay Company in Canada and found a long-
term record of population cycles (Elton and Nicholson 1942). The major
source of hare mortality is predation (Smith et al. 1988), and the hare popu-
lation cycles with a peak abundance approximately every 10 years (Figure
6.16). The lynx population is highly synchronized with the hare and usually
peaks one or two years later. These are not the only prey and predator species
that cycle in the boreal north. Populations of muskrat, ruffed grouse, and
ptarmigan exhibit 9 to 10 year cycles, whereas smaller herbivores such as
voles and lemmings cycle with peaks every 4 years. Predators such as foxes,
mink, owls, and martens also cycle synchronously with their prey.

What is the explanation for the striking hare-lynx cycle? An early sugges-
tion that the hare cycles were correlated with sunspot activity was dismissed
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Figure 6.16 One-hundred-year record of population cycles of the snowshoe hare
(Lepus americanus) and the Canada lynx (Lynx canadensis), based on pelt records of
the Hudson's Bay Company in Canada.
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because sunspot activity peaks every 11 years, whereas the hare cycle is
approximately 10 years in length (Moran 1949). For many years, the
hare-lynx cycle was the classic textbook example of predator and prey pop-
ulations that cycled according to the Lotka—Volterra model. More recently,
ratio-dependent predator—prey models have been applied to the hare-lynx
data (Akcakaya 1992). These models are based on the assumption that the
functional response of the predator depends not simply on victim abundance
(V), but on the ratio of prey to predator abundance (V/P) (Arditi and
Ginzburg 1989).

Unfortunately, two additional pieces of data complicate the story. First, the
hare-lynx cycles seem to be broadly synchronized within a year or two over
wide areas of North America (Smith 1983). If the predator—prey models were
correct, we would expect cycles of different amplitude and period to arise in
different local populations. Second, there are places on the coast of British
Columbia and on Anticosti Island, Quebec, where there are no lynx, but the
hare population cycles nonetheless!

These results suggest that the hare and lynx do not reciprocally influence
each other. Instead, the lynx population is probably “tracking” the hare cycle.
The hare cycle seems to be caused, in part, by interactions with its food sup-
ply. Heavily grazed grasses produce shoots with high levels of toxins that make
them less palatable to hares (Keith 1983). This chemical protection persists for
two or three years after grazing, further contributing to the hare decline. A sin-
gle-species logistic model with a time lag (see Chapter 2) would qualitatively
describe this sort of cycle. However, as most hares die of predation, not starva-
tion, food quality probably contributes to their susceptibility to predation.

Finally, recent evidence again suggests that sunspots may indeed con-
tribute to the cycles. Sunspot activity is associated with hare browse marks
in tree rings and with periods of low snow accumulation (Sinclair et al. 1993).
Sunspot activity may serve as a phase-locking mechanism through indirect
influences on climate and plant growth. These broad climatic effects could be
responsible for the synchrony of hare-lynx cycles over large areas of Canada
and Alaska. However, the degree of synchrony among continents is current-
ly being debated (Ranta et al. 1997; Sinclair and Gosline 1997). Whatever the
ultimate explanation, it is clear that the hare-lynx cycle is more complex than
suggested by the superficial match of the data to the simple predictions of
the Lotka—Volterra model.

POPULATION CYCLES OF RED GROUSE

Interactions between hosts and parasites represent a special kind of “preda-
tion” in which the life history of the predator is intimately tied to that of its
host. Whereas most predators benefit from rapidly killing and consuming
their prey, a parasite must keep its host alive at least long enough to success-
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fully reproduce and infect a new host. To understand the population dynam-
ics of hosts and parasites, we must therefore model the dynamics of the egg
or larval stages, as well as those of the host and the adult parasite (Anderson
and May 1978).

A nice example illustrating these complexities is the case of the parasitic
nematode Trichostrongylus tenuis, which infects red grouse (Lagopus lagopus
scoticus) on the moors of England and Scotland. Adult worms inhabit the large
caeca of red grouse, and their eggs pass out of the host with the feces. If the
environment is warm and moist, the eggs hatch and develop into a larval stage.
The larval nematode moves to the growing tips of heather plants, where it is
consumed by a new host, and the life cycle repeats itself. A single bird may be
host to over 10,000 worms. As the intensity of the parasite infection increases,
winter mortality, egg mortality, and chick losses all increase (Figure 6.17). Thus,
T. tenuis has the potential to regulate the population growth of red grouse.

Because red grouse are an important game bird in England and Scotland,
there are detailed records on its population dynamics and the prevalence of
parasite infection (Hudson et al. 1992). Figure 6.18 shows a 14-year record of
host and parasite populations at Gunnerside, North Yorkshire. The red
grouse population cycles, with a period of approximately 5 years. Parasite
burden (number of worms per host) also cycles, with peaks occurring near
the low point of the red grouse cycle.

Even a relatively simple model of the grouse-nematode interaction requires
a minimum of three differential equations: one for the host (H), one for the
adult worms (P), and one for the free-living egg and larval stages (W; Dobson
and Hudson 1992). The growth of the host population can be modeled as:

dH _ .

T =(b-d-cH)H (0 +6)P Expression 6.19
The first term [(b — d — cH)H] represents the growth of the red grouse popu-
lation in the absence of the parasite. The constants b and d represent intrin-
sic birth and death rates, and cH is a density-dependent term. The first part of
this equation is really a model of logistic growth, with a carrying capacity of
[(b —d)/c]. A finite carrying capacity is realistic for the grouse population
because the birds are territorial. The second part of the equation [(& + 0)P]
represents the losses due to parasites. & is the reduction in host population
growth due to effects of the parasite on the survivorship of grouse, and 6 is
the reduction due to parasite effects on the reproduction of grouse. We dis-
tinguish between these two mechanisms because & and § appear separately
in other equations in the model.

Next, we write an equation for the growth rate of the free-living stages:

aw

== AP—yW - BWH Expression 6.20
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Figure 6.17 Effects of parasite load on (a) the winter mortality, (b) egg mortality,
and (c) chick losses of red grouse (Lagopus lagopus scoticus). The x axis is the average
parasite load (worms per host), and the y axis is the proportional mortality caused
by each factor. Because the nematode Trichostrongylus tenuis reduces both the sur-
vivorship and reproduction of red grouse, it has the potential to regulate host num-
bers. (From Hudson et al. 1992.)

Here, A is the per capita fecundity of the parasite in the host, yis the death rate
of the egg and larval stages in the field, and SWH is the rate at which larvae
are transmitted to new hosts. Note the similarity of this latter expression to the
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Figure 6.18 Changes in red grouse (Lagopus lagopus scoticus) density (breeding hens
per square kilometer) and mean parasite load (worms per host) over 14 years at
Gunnerside, North Yorkshire. Both the grouse and the nematode populations cycle
with a period of approximately 5 years. Note the logarithmic scale on the y axis.
(From Dobson et al. 1992; data from Hudson et al. 1992.)

“random encounter” term in the Lotka—Volterra model (Equations 6.1 and 6.2).

Finally, we can describe the dynamics of the adult worm population as:

2

28— BWH - (u+d+ )P~ a%(k—;l) Expression 6.21
The first term (BWH) represents the increase in the adult worm population
from transmission. This is equivalent to the loss component of the egg-larva
population. The second term [(u + d + &)P] represents decreases in growth of
the worm population due to parasite death (1), intrinsic host mortality (d),
and host mortality from parasitism (¢t). The final term, [o(P?/H)]{(k + 1) /K],
represents losses due to the spatial dispersion of the worms among hosts. The
constant k describes the distribution of worms among hosts. The smaller & is,
the more aggregated the worms are in a few hosts. Aggregation will tend to
decrease the growth of the worm population as the few heavily infected hosts
die and take their parasites with them! In contrast, if the worms are distrib-
uted randomly or evenly among hosts, the growth rate of the parasite popu-
lation is increased.

With ten different parameters in the model, there are a variety of possible
outcomes. If parasite and host fecundity are not high enough, the parasite
will go extinct, and the grouse population will rise to its carrying capacity. If
the larval life of the parasite is relatively short, the grouse and parasite pop-
ulations will coexist in a stable equilibrium. But if the larval and egg stages



152 CHAPTER 6: PREDATION

are fairly long-lived, the model generates stable cycles of host and parasite
populations. Cycles in this model arise when /8 > k. In other words, the
ratio of parasite effects on survivorship (o) to parasite effects on reproduc-
tion (6) must exceed the degree of parasite aggregation among hosts (k).

Field data were used to independently estimate the parameters of
Expressions 6.19-6.21. The resulting model predicted population cycles with
a period of approximately five years, which was observed at Gunnerside
(Dobson and Hudson 1992). The model also provides insight into other
grouse populations in England and Scotland. Not all grouse and nematode
populations cycle, and these noncycling populations are in areas of relatively
low rainfall (Hudson et al. 1985). Under these circumstances, the survival of
eggs and larvae outside of the host is poor, and the model does not predict
cycles.

The interaction of red grouse and its nematode parasite is one of the few
well-documented cases of a predator and victim that cause each other’s pop-
ulations to cycle. However, the biology of the system is considerably more
complex than that described by the simple Lotka—Volterra model. Models of
host-parasite interactions have also been used to predict the dynamics of HIV
(the AIDS virus) that infects humans.



