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Model Presentation and Predictions

ELEMENTS OF POPULATION GROWTH

A population is a group of plants, animals, or other organisms, all of the same
species, that live together and reproduce. Just as an individual grows by gain-
ing weight, a population grows by gaining individuals. What controls popu-
lation growth? In this chapter, we will build a simple mathematical model
that predicts population size. In later chapters, we will flesh out this model by
including resource limitation (Chapter 2), age structure (Chapter 3), and
migration (Chapter 4). We will also introduce other players: populations of
competitors (Chapter 5) and predators (Chapter 6) that can control growth.
But for now, we will concentrate on a single population and its growth in a
simple environment.

The variable N will be used to indicate the size of the population. Because
population size changes with time, we will use the subscript ¢ to indicate the
point in time we are talking about. Thus, N; is the number of individuals in
the population at time ¢. By convention, we use ¢ = 0 to indicate the starting
point. For example, suppose we census a population of tarantulas and count
500 spiders at the beginning of our study. We revisit the population in one year
and count 800 spiders. Thus, Ny = 500 and Ny = 800.

The units of ¢, in contrast to their numerical values, depend on the organ-
ism we are studying. For rapidly growing populations of bacteria or proto-
zoa, t might conveniently be measured in minutes. For long-lived sea turtles
or bristlecone pines, f would be measured in years or decades. Whatever
units we use, we are interested in predicting the future population size (N; 1)
based on its current size (N;).

The biological details of population growth vary tremendously among dif-
ferent species, and even among different populations within the same
species. The factors that cause a tarantula population to increase from 500 to
800 spiders will be very different from the factors that cause an endangered
condor population to decrease from 10 to 8 birds. Fortunately, all changes in
population size can be classified into just four categories. Populations in-
crease because of births and decrease because of deaths. Population size also
changes if individuals move between sites. Populations increase when new
individuals arrive (immigration) and decrease when resident individuals
depart (emigration).

These four factors operate at different spatial scales. Births and deaths
depend on current population size, as we will explain in a moment. To under-
stand births and deaths, we need to study only the target population. By con-
trast, emigration and immigration depend on the movement of individuals. If
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we want to describe these processes, we must keep track of not just one, but
several interconnected populations.

Any combination of the four factors will change population size. For our
tarantula example, the initial population of 500 spiders might have produced
400 new spiderlings during the year and lost 100 adult spiders to death, with
no movement of individuals. Alternatively, there might have been 50 births
and 50 deaths, with 300 residents leaving (emigration) and 600 spiders arriv-
ing from other populations (immigration). Either scenario leads to an increase
of 300 spiders.

These four factors can be incorporated into a mathematical expression for
population growth. In this expression, B represents the number of births, D is
the number of deaths, I is the number of new immigrants entering the popu-
lation, and E is the number of emigrants leaving the population between time
tand t+1:

Niy1=N;+B-D+I-E Expression 1.1

Expression 1.1 says that population size in the next time period (N} 41) equals
the current population size (Ny) plus births (B) and immigrants (I), minus
deaths (D) and emigrants (E). We are interested in the change in population
size (AN), which is simply the difference in population size between last time
and this time. We get this by subtracting N; from both sides of Expression 1.1:

Nigy=Ny=Ny—N;+B-D+I-E Expression 1.2
AN=B-D+I-E Expression 1.3

To simplify things, we will assume that our population is closed; in other
words, there is no movement of individuals between population sites. This
assumption is often not true in nature, but it is mathematically convenient
and it allows us to focus on the details of local population growth. In Chapter
4, we will examine some models that allow for movement of individuals
between patches. If the population is closed, both I and E equal zero, and we
do not need to consider them further:

AN =B-D Expression 1.4

We will also assume that population growth is continuous. This means that
the time step in Expression 1.1 is infinitely small. As a consequence, popu-
lation growth can be described by a smooth curve. This assumption allows
us to model population growth rate (AN/dt) with a continuous differential
equation (see Appendix). Thus, population growth is described as the
change in population size (dN) that occurs during a very small interval of
time (dt):
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% =B-D Expression 1.5

Now we will focus on B and D. Because this is a continuous differential equa-
tion, B and D now represent respectively the birth and death rates, the num-
ber of births and deaths per unit time during a very short time interval. What
factors control birth and death rates? The birth rate will certainly depend on
population size. For example, a population of 1000 warblers will produce
many more eggs over a short time interval than a population of only 25 birds.
If each individual produces the same number of offspring during that time
interval, the birth rate (B) in the population will be directly proportional to
population size. Let b (lowercase!) denote the instantaneous birth rate. The
units of b are number of births per individual per unit time [births/(individ-
ual « time)]. Because of these units, note that b is a rate that is measured per
capita, or per individual. Over a short time interval, the number of births in
the population is the product of the instantaneous birth rate and the popula-
tion size:

B=bN Expression 1.6

Similarly, we can define an instantaneous death rate d, with units being num-
ber of deaths per individual per unit time [deaths/(individual e time)]. Of
course, an individual either dies or it doesn’t, but this rate is measured for a
continuously growing population over a short time interval. Again, the prod-
uct of the instantaneous death rate and the population size gives the popula-
tion death rate:*

D=dN Expression 1.7

These simple functions will not always apply in the real world. In some cases,
the birth rate may not depend on the current population size. For example, in
some plant populations, seeds remain dormant in the soil for many years in a
seed bank. Consequently, the number of emergent seedlings (births) may
reflect the structure of the plant population many years ago. A model for such
a population would include a time lag because the current growth rate actu-
ally depends on population size at a much earlier time.

Expressions 1.6 and 1.7 also imply that b and d are constant. No matter
how large the population gets, individuals have the same per capita birth and
death rates! But in the real world, birth and death rates may be affected by
crowding: the larger the population, the lower the per capita birth rate and

*Note that AN in the numerator of the expression for continuous population growth (AN/dt) is
not the same as dN in Expression 1.7. In Expression 1.7, dN is the product of the instantaneous
death rate (d) and the current population size (N).
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the higher the per capita death rate. We will explore this sort of density-
dependent model in Chapter 2. For now, we will develop our model assum-
ing a constant per capita birth rate (b) and a constant per capita death rate
(d). Substituting Expressions 1.6 and 1.7 into Expression 1.5 and rearranging
the terms gives us:

aN _ .

T (b-d)N Expression 1.8
Let b —d equal the constant 7, the instantaneous rate of increase. Sometimes »
is called the intrinsic rate of increase, or the Malthusian parameter after the
Reverend Thomas Robert Malthus (1766-1834). In his famous “Essay on the
Principle of Population” (1798), Malthus argued that food supply could never
keep pace with human population growth, and that human suffering and
misery were an inevitable consequence.

The value of r determines whether a population increases exponentially (r
> (), remains constant in size (* = 0), or declines to extinction (r < 0). The units
of r are individuals per individual per unit time [individuals/(individual «
time)]. Thus, r measures the per capita rate of population increase over a
short time interval. That rate is simply the difference between b and d, the
instantaneous birth and death rates. Because 7 is an instantaneous rate, we
can change its units by simple division. For example, because there are 24
hours in a day, an r of 24 individuals/(individual - day) is equivalent to an r
of 1 individual/(individual « hour). Substituting r back into Expression 1.8,
we arrive at our first model of population growth:

. ———~=rN Equatloﬂ

Equation 1.1 is a simple model of exponential population growth. It says that
the population growth rate (dN/dt) is proportional to » and that populations
only increase when the instantaneous birth rate (b) exceeds the instantaneous
death rate (d), so that r > 0. If r is positive, population growth continues
unchecked and is proportional to N: the larger the population, the faster its
rate of increase.

When will our model population not grow? A population will neither
increase nor decrease when the population growth rate equals zero (AN/dt =
0). For Equation 1.1, there are only two cases when this is true. The first is
when N = 0. Because of migration, population growth in nature will not nec-
essarily stop when the population reaches zero. But in our simple model
immigration is not allowed, so the population will stop growing if it ever hits
the “floor” of zero individuals. The population will also stop growing if r
should equal zero. In other words, if the per capita birth and death rates are
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exactly balanced, the population will neither increase nor decrease in size. In
all other cases, the population will either increase exponentially ( > 0) or
decline to extinction (r < 0).

PROJECTING POPULATION SIZE

Equation 1.1 is written as a differential equation. It tells us the population
growth rate, but not the population size. However, if Equation 1.1 is inte-
grated (following the rules of calculus; see Appendix), the result can be used
to project, or predict, population size:

Ny is the initial population size, N is the population size at time ¢, and e is a
constant, the base of the natural logarithm (e = 2.718). Knowing the starting
population size and the intrinsic rate of increase, we can use Equation 1.2 to
forecast population size at some later time. Equation 1.2 is similar to the for-
mula used by banks to calculate compound interest on a savings account.

Figure 1.1a illustrates some population trajectories that were calculated
from Equation 1.2 for five different values of r. In Figure 1.1b, these same data
are shown on a semilogarithmic plot, in which the y axis is the natural loga-
rithm (base e) of population size. This transformation converts an exponential
growth curve to a straight line. The slope of this line is r.

These graphs show that when r > 0, populations increase exponentially,
and that the larger the value of r, the faster the rate of increase. When r < 0,
populations decline exponentially. Mathematically, such populations never
truly reach zero, but when the population reaches a projected size of less than
one individual, extinction has occurred (by definition).

CALCULATING DOUBLING TIME

One important feature of a population (or a savings account) that is growing
exponentially is a constant doubling time. In other words, no matter how
large or small the population, it will always double in size after a fixed time
period. We can derive an equation for this doubling time, f4ouple, by noting
that, if the population has doubled in size, it is twice as large as the initial
population size:

Nt oo = 2No Expression 1.9

Substituting back into Equation 1.2 gives an expression in terms of initial
population size:

2N = Nye''double Expression 1.10
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Figure 1.1 (a) Trajectories of exponential population growth, calculated from a start-
ing population size of 100 individuals. The estimated r of —0.003034 [individuals /
(individual « year)] corresponds to the projection for the grizzly bear (Ursus arctos
horribilis) population of Yellowstone National Park (see Figure 1.6). (b) Exponential
growth curves plotted on a semilogarithmic graph. The same data are used as in (a),
but the y axis (population size) shows the natural logarithm (base ¢) of population
size. In this type of graph, an exponential curve becomes a straight line; the slope of
that line is 7, the intrinsic rate of increase.
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Table 1.1 Estimates of r and doubling times for different organisms.

Sp‘ecies ; Common . ir;[ing{;}idugis / Doubimg .
‘ ~ name (individual » day)]  time
T phage ... . - 33n
Escherichin coli . Bacterium ’ 587 .
Paramecium caudétum Profowean . w0 159 .
Hydra L e ]fQ-S'ék - -
Tribolivm castaneum k :‘Flo@‘bééﬂej -
Rattus norvegicus Brown rat
Bostimrme oo v " 'Doifnesﬁ:c{cowy: :“:~ ‘
Avicennia maring Mangrov
Nothofagus fusca Southem bee
From Fenchel (1974).

Dividing through by Ny eliminates it from both sides of the equation:

2 = ¢double Expression 1.11
Taking the natural logarithm of both sides gives:
In(2) = rtgoupte Expression 1.12

Expression 1.12 can be rearranged to solve for doubling time:

Thus the larger 7 is, the shorter the doubling time. Table 1.1 gives some esti-
mated values of v (with their corresponding doubling times) for different
species of plants and animals. Among species, r varies considerably, and
much of this variation is related to body size: small-bodied organisms grow
faster and have larger rates of population increase than large-bodied organ-
isms. For example, bacteria and protozoa can reproduce by asexual fission
every few minutes and have high population growth rates. Larger organisms,
such as primates, have delayed reproduction and long generation times,
which lead to low values of r. Corresponding doubling times range from
minutes for viruses to decades for beech trees.

Note, however, that even “slow-growing” populations eventually will
reach astronomical sizes if they increase exponentially. Table 1.2 projects the
future population size for a hypothetical herd of 50 Vermont cows [r = 0.365
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Table 1.2 Exponential growth of a herd of 50 cattle, with r = 0.365 cows/(cow e year).

Population sizes calculated from Equation 1.2.

cows/(cow e year)]. After 150 years of exponential growth, the model pre-
dicts a herd of 3 x 10% cattle, the weight of which would exceed that of the
planet earth!

Model Assumptions

What are the assumptions of Equation 1.1? In other words, what is the under-
lying biology of a population that is growing exponentially? This is a critical
question that must be asked for any mathematical model we construct. The
predictions of a mathematical model depend on its underlying assumptions. If
certain assumptions are violated, or changed, the predictions of the model will
also change. Other assumptions may be less critical to the predictions of the
model; the model is robust to violations of these assumptions. We make the
following assumptions for a population growing according to Equation 1.1:

l/ No I or E The populatlon 1s

:';‘k':ulahons In Chap’cer 4 we Wﬂl reiax thls assumptlon an b
fifsnnple models in whlch there is migratlon between populatlons
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v Constant b and d. 1f a population is going to grow with constant birth
and death rates, an unlimited supply of space, food and other resources

must be available. Otherwise, the birth rate will decrease and /or the
death rate will increase as resources are depleted. Constant birth and
death rates also imply that b and d do not change randomly through
time. Later in this chapter, we will incorporate variable birth and death
rates in the model to see how the predictions are affected.

v No genetic structure. Equation 1.1 implies that all the individuals in the
population have the same birth and death rates, so there cannot be any
underlying genetic variation in the population for these traits. If there is
genetic variation, the genietic structure of the population must be con-

_ stant through time. In this case, r represents an average of the instanta-
neous rate of increase for the ¢ fferent genotypes in the population.

v No age or size structure; Similarly, there are no differences in b and d
- among individuals due to their age or body size. Thus, we are model-

_ ing a sexless, parthenogenetic population in which individuals are
immediately reproductive when they are born. A growing population of
bacteria or protozoa most closely approximates this situation. In Chapter
3, we will relax this assumption and examine a model of exponential
growth in which individiials have different birth and death rates as they
age. If there are differences among ages, the population must have a sta-
ble age structure (see Chapter 3); in this case, 1 is an average calculated
across the different age classes.

v Continuous growth with no time lags. Because our model is written as a
simple differential equation, it assumes that individuals are being born
and dying continuously, and that the rate of increase changes instantly
as a function of current population size. Later in this chapter, we will

relax the assumption of continuous growth and examine a model with
discrete generations. In Chapter 2, we will explore models with time lags,
in which population growth depends not on current popiilation size, but
on its size at some time in the pa: -

The most important assumption on this list is that of constant b and d,
which implies unlimited resources for population growth. Only if resources
are unlimited will a population continue to increase at an accelerating rate.
If the other assumptions are violated, populations may still increase expo-
nentially, although migration and time lags will complicate the picture.

But unlimited resources do not occur in nature, and we know that no real
population increases without bound. 5o, why does the exponential growth
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model form the cornerstone of population biology? Although no population
can increase forever without limit, all populations have the potential for expo-
nential increase. Indeed, this potential for exponential increase in population
size is one of the key factors that can be used to distinguish living from non-
living objects. The exponential model recognizes the multiplicative nature of
population growth and the positive feedback that gives populations the
potential to increase at an accelerating rate.

Exponential population growth is also a key feature of Charles Darwin’s
(1809-1882) theory of natural selection. Darwin read Malthus” writings and
recognized that the surplus of offspring resulting from exponential growth
would allow natural selection to operate and bring about evolutionary
change. Finally, although no population can increase forever, resources may
be temporarily unlimited so that populations go through phases of exponential
increase. Outbreaks of insect pests, invasions of “weedy” plant species, and
the plight of overcrowded human populations are compelling evidence of the
power of exponential population growth.

Model Variations

CONTINUOUS VERSUS DISCRETE POPULATION GROWTH

We will now explore some variations on our exponential growth model. For
many organisms, time does not really behave as a continuous variable. For
example, in seasonal environments, many insects and annual desert plants
reproduce only once, then die; the offspring that survive form the basis for
next year’s population. If birth and death rates are constant (as in the expo-
nential model), then the population will increase or decrease by the same fac-
tor each year. This population has non-overlapping generations and is mod-
eled with a discrete difference equation rather than a continuous differential
equation. Suppose the population increases (or decreases) each year by a con-
stant proportion ry, the discrete growth factor. Thus, if the population
increased annually by 36%, 1y = 0.36. The population size next year would be:

Ny =N;+1N; Expression 1.13
Combining terms gives:
Niyp =Ny (1 +7 ) Expression 1.14
Let 1 + 77 = 4, the finite rate of increase. Then:

Nig1=2AN; Expression 1.15
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A is always a positive number that measures the proportional change in pop-
ulation size from one year to the next. Thus, A is the ratio of the population
size during the next time period to the population size for the current time
period (Ny.1/Ny). After two years, the population size will be:

Ny = AN; = AM(ANg) = A%N, Expression 1.16

Notice that the “output” of Expression 1.15 (N, 1) forms the “input” (Ny) for
the calculation in the next time step. The general solution to this recursion
equation after f years is:

- Nt:ltNO ~ - Equation14

Equation 1.4 is analogous to Equation 1.2, which we used to project popula-
tion size in the continuous model. What does population growth look like
with the discrete model? The answer depends on the precise timing of birth
and death events. Imagine that births are pulsed each spring and that deaths
occur continuously throughout the year. The population growth curve will
resemble a jagged saw blade, with a sharp vertical increase from births each
spring, followed by a gradual decrease from deaths during the rest of the
year. In spite of this decrease, the overall curve will rise exponentially,
because annual births exceed annual deaths (Figure 1.2). The size of each
“tooth” in the growth curve will increase year after year because the same
fractional increase will add more individuals to a large population than to a
small one. For example, if A = 1.2, the population increases by 20% each year.

18,000
16,000
14,000
12,000
10,000

8000

6000

Population size (N)

Time (£)

Figure 1.2 Discrete population growth. In this example, births are pulsed at the
beginning of the year, and deaths occur continuously.
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If the population size is 100, it will increase by 20 in one year. But when the
population size is 1000, it will increase by 200 in one year.

Suppose our population reproduced twice a year, as is the case for some
insects. Now we would have a “tooth” on the graph every six months. If the
time step between reproductive periods becomes shorter and shorter, the teeth
on the graph will be closer and closer together. Finally, if the time step is infi-
nitely small, the curve is no longer jagged but is smooth, and we have arrived
again at the continuous model of exponential growth (Equation 1.2). The con-
tinuous model essentially “connects the dots” of time in the discrete model.
The continuous model is equivalent to a discrete difference equation with an
infinitely small time step. Thus, we can use the rules of calculus to solve for
the limit of (1 + ;) and show that:

We can express Equation 1.5 in equivalent logarithmic form as:

where In is the natural logarithm (base e). This relationship between r and A
also establishes the following numerical equivalents:

r>04>1 Expression 1.17
r=0c1=1 Expression 1.18
r<0e0<A<] Expression 1.19

Because A is a ratio of population sizes, it is a dimensionless number with no
units. However, A is associated with the particular time step of the equation
and cannot be changed by a simple scaling. For example, a A of 1.2 measured
with a yearly time step is not equivalent to a A of 0.1 measured with a month-
ly time step. A4 of 1.2 yields a 20% annual increase, whereas a A of 0.1 yields
a 90% monthly decrease! If you need to change the time step for 4, first con-
vert A to r using Equation 1.6. Then scale  to the appropriate time units and
convert back to A with Equation 1.5. In this example, A = 1.2 is equivalent to
7 = 0.18232 individuals/(individual - year). Dividing by 12 (months) gives
r = 0.01519 individuals/(individual « month). From Equation 1.5, A = 1.0153,
with a monthly time step. As a check on this calculation, we can use Equation
1.4 to show that, after 12 months:
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N; =(1.0153)"* N, Expression 1.20
N, =12N, Expression 1.21

This calculation demonstrates that 4 = 1.0153 for a monthly time step is
equivalent to A = 1.2 for a yearly time step.

In summary, the predictions of the discrete and continuous models of
exponential population growth are qualitatively similar to one another. In
Chapter 2, we will see that discrete models behave very differently when we
incorporate resource limitation.

ENVIRONMENTAL STOCHASTICITY

Equation 1.2 is entirely deterministic. If we know Nj, 7, and ¢, we can calcu-
late the predicted population size to the last decimal place. If we started over
with the same set of conditions, the population would grow to precisely the
same size. In such a deterministic model, the outcome is determined solely
by the inputs, and nothing is left to chance.

Deterministic models represent an idealized view of a simple, orderly
world. But the real world tends to be complex and uncertain. Think of public
transportation. Does any commuter ever expect their bus or train to arrive at
precisely the time indicated in the printed schedule? At least in American cities,
buses are delayed, trains break down, and subways travel at irregular speeds,
all of which introduce uncertainty (and anxiety) into the daily commute.

Could we incorporate all of the complex sources of variation into a public
transportation model? Not very easily. But we could measure, each day, the
arrival time of our bus. After many commuting days, we could calculate two
numbers that would help us to estimate the uncertainty. The first number is
the average or mean arrival time of the bus. If we use the variable x to indi-
cate the time the bus arrives, the mean is depicted as X. Approximately half of
all buses will arrive later than X and half will arrive earlier. The second num-
ber we could calculate is the variance in arrival times (62). The variance mea-
sures the variability or uncertainty associated with the mean. If the variance
is small, then we know that most days the bus will arrive within, say, two
minutes of the mean. But if the variance is large, the arrival time of the bus on
any given morning could be as much as 20 minutes earlier or 20 minutes later
than x. Obviously, our “commuting strategy” will be affected by both the
mean and the variance of x.

How can we incorporate this type of uncertainty into an exponential
growth model? Suppose that the instantaneous rate of increase is no longer a
simple constant, but instead changes unpredictably with time. Uncertainty
in r means there are good times and bad times for population growth. During
good times, the birth rate is much larger than the death rate, and the popula-
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tion can increase rapidly. During bad times, the difference between birth and
death rates is much smaller, or perhaps even negative, so that the population
increases slowly, or even decreases, for a short time period. Without specify-
ing all of the biological causes of good and bad years, we can still develop a
stochastic model of population growth in a varying environment. Variability
associated with good and bad years for population growth is known as envi-
ronmental stochasticity.

Imagine that a population is growing exponentially with a mean r (7) and a
variance in r (6 2). We will use this model to predict the mean population size at
time ¢ (N¢) and the variance in population size (612%). Make sure you understand
the difference between these two averages and the two variances: the average and
variance in r are used to predict the average and variance in N.

The derivation of this model is beyond the scope of this primer, but the
results are straightforward. First, the average population size for a popula-
tion growing with environmental stochasticity is:

N, =Noe;t“ - Equation 1.7
This is no different from the deterministic model (Equation 1.2) except that
we use the average r to predict the average Ny However, like the “average
family” with 2.1 children, N may not be a very accurate descriptor of any
particular population. Figure 1.3 shows a computer simulation of a popula-
tion growing with environmental stochasticity. Although the population
achieves exponential increase in the long run, it fluctuates considerably from
one time period to the next. The variance in population size at time f is given
by (May 1974a):

e e
0—%\& —_-Ngngf(eGrt—l) . Equation18

Other mathematical expressions for this variance are possible, depending on
precisely how the model is formulated.” Equation 1.8 tells us several things
about the variance of the population. First, population variance increases
with time. Like stock-market projections or weather forecasts, the further

“Technically, we are replacing r in Equation 1.2by r + O %th where W, is a “white noise” distri-
bution. This is a stochastic differential equation, which unfortunately does not have a
unique solution. I have followed May (1974a), who presents the Ito solution to this prob-
lem. Biologically, the Ito solution is appropriate because it arises as a diffusion approxima-
tion to a discrete model of geometric random growth, similar to Expression 1.15. Interested
readers should consult May (1973, 1974a) and Roughgarden (1979) for more details.
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Figure 1.3 Exponential growth with environmental stochasticity. In this model,
the instantaneous rate of increase fluctuates randomly through time. Here N = 20;
r = 0.05; 62 = 0.0001.

into the future we try to predict population size, the more uncertain our esti-
mate. Consequently, the population growth curve resembles a funnel that
flares out with increasing time (Figure 1.3). Second, the variance of N is pro-
portional to both the mean and variance of r. Populations that are growing
rapidly, or have a variable r, fluctuate more than slow-growing populations
or those with a relatively constant r. Finally, if the variance of r is zero,
Equation 1.8 collapses to zero—there is no variance in Ny, so we have
returned to the deterministic model.

There is a limit to how much the population can vary in size and still per-
sist. If N fluctuates too violently, the population may “crash” to zero. This can
happen even if 7 is large enough to ensure rapid growth for the “average”
population. Extinction from environmental stochasticity will almost certainly
happen if the variance in 7 is greater than twice the average of » (May 1974a):

In our deterministic model, the population increased exponentially as long
as r was greater than zero. With environmental stochasticity, the average pop-
ulation size also increases exponentially as a function of 7. However, if the
variance in r is too large, there is a measurable risk of population extinction.

DEMOGRAPHIC STOCHASTICITY

Environmental stochasticity is not the only source of variability that can affect
populations. Even if r is constant, populations may still fluctuate because of
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demographic stochasticity. Demographic stochasticity arises, in part, because
most organisms reproduce themselves as discrete units: an ostrich can lay 2
eggs or 3, but not 2.6! Some clonal plants and corals can reproduce by frag-
mentation and asexual budding, and in that sense, “pieces” of individuals
may contribute to population increase (see Chapter 3). But for most organ-
isms, population growth is an integer process.

If we were to follow a population over a short period of time, we would
see that births and deaths are not perfectly continuous, but instead occur
sequentially. Suppose that the birth rate is twice as large as the death rate.
This means that a birth would be twice as likely to occur in the sequence as a
death. In a perfectly deterministic world, the sequence of births and deaths
would look like this: ...BBDBBDBBDBBD.... But with demographic stochas-
ticity, we might see : ...BBBDDBDBBBBD.... By chance, we may hit a run of
four births in a row before seeing a death in the population. This demo-
graphic stochasticity is analogous to genetic drift, in which allele frequencies
change randomly in small populations.” In a model of demographic stochas-
ticity, the probability of a birth or a death depends on the relative magnitudes
of band 4:

Suppose that, for a chimpanzee population, b = 0.55 births/(individual -
year) and that 4 = 0.50 deaths/(individual « year). This yields an r of 0.05
individuals/(individual « year), with a corresponding doubling time of
13.86 years (Equation 1.3). From Equations 1.10 and 1.11, the probability of
birth is [0.55/(0.55 + 0.50)] = 0.524, and the probability of death is

*As in the analysis of environmental stochasticity, the equations depend on the particular bio-
logical details of the model. One formulation for demographic stochasticity is that individuals
in a population live and die independently of one another for random durations. Lifetimes
have an exponential distribution with a mean of 1/(b + d). At the end of its life, an individual
either replicates itself with probability b/(b + d) (Equation 1.10) or it dies with probability
d/(b + d) (Equation 1.11). The independence of individual births and deaths leads to Equation
1.15, which gives the overall probability of population extinction.

An alternative formulation for demographic stochasticity is that change in population size
is described by a matrix (Markov) transition model. In this case, the population persists with
N individuals for a time that has an exponential distribution with a mean of 1/N(b + d). At the
end of this time, the population either increases to N + 1 with probability b/(b + d) (Equation
1.10) or it decreases to N — 1 with probability d/(b + d) (Equation 1.11). Interested readers
should consult Iosifescu and Tautu (1973) for more details.
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[0.50/(0.55 + 0.50)] = 0.476. Note that these probabilities must add to 1.0,
because the only “events” that can occur in this population are births or
deaths. Because a birth is more likely than a death, the chimpanzee popu-
lation will, on average, increase. However, population size can no longer
be projected precisely; by chance, there could be a run of births or a run of
deaths in the population. Figure 1.4 shows a computer simulation of four
populations that each began with 20 individuals and grew with stochastic
births and deaths. Two of these populations actually declined below Nj,
even though r was greater than zero.

As in our analysis of environmental stochasticity, we are interested in the
average population size and its variance. The average population size at time
t is again given by:

Population size (N)

10 -

0 1 L I l |
0 10 20 30 40 50

Population births and deaths

Figure 1.4 Computer simulation of population growth with demographic stochas-
ticity. Each population track starts with an N of 20 individuals. b = 0.55 births / (indi-
vidual « year) and d = 0.50 deaths / (individual . year). Although the starting condi-
tions are identical, two of the populations actually dipped below the initial popula-
tion size by the end of the simulation. Note that the x axis is not absolute time, but
the number of sequential population events (births and deaths).
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which is the same as in the deterministic model. The equation for variance of
population size depends on whether the birth and death rates are equal or
not. If b and d are exactly equal, the population will not increase on average,
and the variance in population size at time ¢ is (Pielou 1969):

O'i{t = ZNgbt . - Equa‘tioni.lsk
If b and d are not equal, use the following:

~ A rif it . - . - ,
. F ) i
As in the model of environmental stochasticity, the variance in population
size increases with time, and there is a risk of extinction even for populations
with positive r. Demographic stochasticity is especially important at small
population sizes because it doesn’t take very many sequential deaths to drive
a small population to extinction. Consequently, the probability of extinction
depends not only on the relative sizes of b and d, but also on the initial pop-
ulation size. This probability of extinction is:

P(extmctlon) ( b) .  Equation1.15
For the chimpanzee example, if there were 50 chimps initially, the chance of
extinction would be (0.50/0.55)>° = 0.009 = 0.9%. However, if the initial pop-
ulation size were only 10 chimps, the chance of extinction would be
(0.50/0.55)10 = 0.386 = 38.6%.

Equations 1.13 and 1.14 also show that demographic stochasticity depends
not only on the difference between b and d, but on the absolute sizes of b and
d. Populations with high birth and death rates will be more variable than pop-
ulations with low rates. Thus, a population with b = 1.45 and 4 = 1.40 will fluc-
tuate more than a population with b = 0.55 and d = 0.50. In both populations, r
= 0.05, but in the first, there is a much faster turnover of individuals, and thus
a much greater chance for a run of several consecutive births or deaths.

To summarize, the average population size in stochastic models of expo-
nential growth is the same as in the deterministic model we originally
derived. In a stochastic world, populations can fluctuate because of changes
in the environment that affect the intrinsic rate of increase (environmental
stochasticity) and because of random birth and death sequences (demo-
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graphic stochasticity). For both types of variability, a population can fluctuate
so much that extinction is likely, even if the average intrinsic rate of increase
is positive. Demographic stochasticity is much more important as a cause of
extinction at small population sizes than at large.

Empirical Examples

PHEASANTS OF PROTECTION ISLAND

Humans have introduced many species into new environments, both inten-
tionally and accidentally. Some of these introductions have turned out to be
interesting ecological experiments. For example, in 1937, eight pheasants
(Phasianus colchicus torquatus) were introduced onto Protection Island off the
coast of Washington State (Lack 1967). The island had abundant food re-
sources and no foxes or other bird predators. The island was too far from the
mainland for pheasants to fly to it, so migration did not influence population
size. From 1937 to 1942, the population increased to almost 2000 birds (Figure
1.5a,b). The curve shows a jagged increase that is similar to our discrete
model of population growth. This increase reflects the fact that pheasant
chicks hatch in the spring, and mortality continues throughout the year.

The initial population of eight birds had increased to 30 by the beginning
of 1938. If we assume that resources were not limiting growth at this time,
we can estimate A as (30/8) = 3.75, with a corresponding r of In(3.75) = 1.3217
pheasants/(pheasant « year). We can use this estimate to predict population
size from the exponential growth model, and compare it to the actual size of
the pheasant population each year. The initial predictions of this model were
reasonably accurate, but after 1940, the model overestimated population size.
By 1942, the population had grown to 1898 birds, whereas the model predic-
tion was three times larger (5933 birds). This difference probably reflects
depletion of food resources on the island by the increasing pheasant popula-
tion. Unfortunately, this interesting ecological experiment ended abruptly
when the U.S. Army set up a training camp for World War II on the island,
and promptly ate the pheasants!

GRIZZLY BEARS OF YELLOWSTONE NATIONAL PARK

The grizzly bear (Ursus arctos horribilis) was once widespread throughout
most of North America. Today, its range in the lower 48 states consists of only
six fragmented populations in the northwest, some of which have fewer than
10 individuals. Yellowstone National Park supports one of the largest remain-
ing populations, which fluctuates markedly from year to year (Figure 1.6).
The grizzly bear population data obviously do not conform to a simple
exponential growth model, but they can be described by a more complex
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Figure 1.5 Growth of pheasant (Phasianus colchicus torquatus) population introduced
to Protection Island. The thin line shows the hypothetical exponential growth curve,
with 7 = 1.3217 individuals / (individual . year); the thick line shows the observed
population size. For comparison, population sizes are plotted on a linear scale in (a)
and a logarithmic scale in (b). Note that the logarithmic scale is base 10, not base e.
(Data from Lack 1967.)

exponential model that incorporates environmental stochasticity (Dennis et
al. 1991). The estimate of r that emerged from this model is —0.003034
bears/(bear » year), suggesting that the population will decline slowly in the
long run. However, the variance for this estimate was relatively large, so we
should not be surprised to see periods of population increase. Based on this
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Figure 1.6 Population size of grizzly bears (Ursus arctos horribilis) in Yellowstone
National Park. These data were used to construct a model of exponential population
growth that incorporates environmental stochasticity. The estimate of r from this
model was —0.003034 individuals / (individual « year). (From Dennis et al. 1991.)

model, the prognosis for the Yellowstone grizzly bear population is not good.
The model forecasts that the population is certain to drop below 10 individ-
uals, at which point extinction is almost guaranteed. However, because r is
close to zero and its variance is large, the estimated time to extinction is 200
years. Thus, the model suggests that it is unlikely the grizzly bear population
is in immediate danger of extinction, but that the population is likely to reach
a dangerously small size in the long run.

This projection assumes that background variability in b and d will con-
tinue in the future. Thus, the model does not incorporate catastrophic events,
such as the 1988 Yellowstone fire, or future changes in human activity and
management strategy, such as the 1970-1971 closure of the park garbage
dumps, an important food source for the bears. Because this model is one of
exponential population growth in a stochastic environment, it does not incor-
porate resource limitation, which might lead to different predictions (see
Chapter 2). Finally, the predictions of the model will change as additional
data from yearly censuses become available. Increasingly, conservation biol-
ogists and park managers are using quantitative population models to esti-
mate the risk of extinction for endangered species. Many of these models are
based on the principles of exponential population growth that we have devel-
oped in this chapter.
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Problems

1.1.

1.2

1.3.

1.4.

*1.5.

In 1993, when the first edition of this book was written, the world’s
human population was expected to double in size in approximately 50
years. Assuming population growth is continuous, calculate 7 for the
human population. If the population size in 1993 was 5.4 billion, what
was the projected population size for the year 20007

The future is here! On August 2, 2000 the best estimate of the world pop-
ulation size was 6.087 billion—a bit higher than that projected by the
model in 1993. To find out the current estimate of the world population
size, visit this website maintained by the U.S. Census Bureau:

http:/ /www.census.gov/main/www /popclock.html

This website has a “real-time clock” that shows the estimated world and
U.S. population sizes. What is today’s date for you, reader, and how large
is the human population now?

You are studying a population of beetles of size 3000. During a one-
month period, you record 400 births and 150 deaths in this population.
Estimate r and project the population size in 6 months.

For five consecutive days, you measure the size of a growing population
of flatworms as 100, 158, 315, 398, and 794 individuals. Plot the logarithm
(base e) of population size to estimate 7.

A population of annual grasses increases in size by 12% every year. What
is the approximate doubling time?

You are studying an endangered population of orchids, for which b =
0.0021 births/(individual  year) and d = 0.0020 deaths/(individual «
year). The current population size is 50 plants. A new shopping mall is

_planned that will eliminate part of the orchid habitat and reduce the pop-

ulation to 30 plants. Estimate the effect of the proposed development on
the probability of extinction.

* Advanced problem
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Model Presentation and Predictions

In Chapter 1, we assumed (unrealistically) that resources for population
growth were unlimited. Consequently, the per capita birth and death rates, b
and d, remained constant. We did explore some models in which b and d fluc-
tuated through time (environmental stochasticity), but those fluctuations
were density-independent; in other words, birth and death rates did not
depend on the size of the population. In this chapter, we assume that
resources for growth and reproduction are limited. As a consequence, birth
and death rates depend on population size. To derive this more complex
logistic growth model, we will start with the familiar growth equation:

%I;l =(b"-d")N Expression 2.1
but now we will modify " and d’ so they are density-dependent and reflect
crowding.

DENSITY DEPENDENCE

In the face of increased crowding, we expect the per capita birth rate to
decrease because less food and fewer resources are available for organisms to
use for reproduction. The simplest formula for a decreasing birth rate is a
straight line (see Figure 2.1):

b’=b-aN Expression 2.2

In this expression, N is population size, b’ is the per capita birth rate, and b
and a are constants. From Expression 2.2, the larger N is, the lower the birth
rate. On the other hand, if N is close to zero, the birth rate is close to b. The
constant b is the birth rate that would be achieved under ideal (uncrowded)
conditions, whereas b’ is the actual birth rate, which is reduced by crowding.
Thus, b has the same interpretation as in the original exponential growth
model: it is the instantaneous per capita birth rate when resources are unlim-
ited. The constant 2 measures the strength of density dependence. The larger
a is, the more sharply the birth rate drops with each individual added to the
population. If there is no density dependence, then a = 0, and the birth rate
equals b, regardless of population size. Thus, the exponential growth model is
a special case of the logistic model in which there are no crowding effects on
the birth rate (z = 0) or on the death rate (c = 0).

Using similar reasoning, we can modify the death rate to reflect density
dependence. In this case, we expect the death rate to increase as the popula-
tion grows:

d’=d+cN Expression 2.3
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Again, the constant d is the death rate when the population size is close to
zero, and the population is growing (almost) exponentially. The constant ¢
measures the increase in the death rate from density dependence.

Expressions 2.2 and 2.3 are the simplest mathematical descriptions of the
effects of crowding on birth and death rates. In real populations, the func-
tions may be more complex. For example, b” and d’ may not change in a linear
fashion; instead, there may be no change in b’ or d’ until a critical threshold
density is reached. Some animals can reproduce, hunt, care for their off-
spring, or avoid predators more efficiently in groups than they can by them-
selves. For these populations, b’ may actually increase and d’ decrease as the
population grows. This Allee effect (Allee et al. 1949) is usually important
when the population is small, and may generate a critical minimum popula-
tion size, below which extinction occurs (see Problem 2.3). But as the popu-
lation grows, we expect negative density effects to appear as resources are
depleted.

Note that both birth and death rates are density-dependent in this model.
But it might be that only the death rate is affected by population size, and the
birth rate remains density-independent, or vice versa. Fortunately, the algebra
of this case works out exactly the same (see Problem 2.5). As long as either
the birth rate or the death rate shows a density-dependent effect, we arrive
at the logistic model.

Now we substitute Expressions 2.2 and 2.3 back into 2.1:

dg [(b aN)—(d+cN )]N Expression 2.4
After rearranging the terms:
‘Zj [(b d)-(a+c)N ]N Expression 2.5

Next, we multiply Expression 2.5 by [(b — d)/ (b — d)]. This term equals 1.0, so
it does not change the results, but allows us to simplify further:

% [EZ Zﬂ[(b d)—(a+c)N|N Expression 2.6
ral e d)][(b d) %Z;L%N} Expression 2.7

Treating (b — d) as r, we have:

N [1- ey ]

ar (b—d) Expression 2.8
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CARRYING CAPACITY
Because g, ¢, b, and d are all constants in Expression 2.8, we can define a new
constant K:

_(b—d)
" (a+o)

Expression 2.9

The constant K is used for more than just mathematical convenience. It has a
ready biological interpretation as the carrying capacity of the environment. K
represents the maximum population size that can be supported; it encompasses
many potentially limiting resources, including the availability of space, food,
and shelter. In our model, these resources are depleted incrementally as crowd-
ing increases. Because K represents maximum sustainable population size, its
units are numbers of individuals. Substituting K back into Expression 2.8 gives:

@ Bon(id)  mwens

Equation 2.1 is the logistic growth equation, which was introduced to ecolo-
gy in 1838 by P.-F. Verhulst (1804-1849). It is the simplest equation describ-
ing population growth in a resource-limited environment, and it forms the
basis for many models in ecology.

The logistic growth equation looks like the equation for exponential
growth (rN) multiplied by an additional term in parentheses (1 — N/K). The
term in parentheses represents the unused portion of the carrying capacity.
As an analogy, think of the carrying capacity as a square frame that will hold
a limited number of flat tiles, which are the individuals. If the population
should ever exceed the carrying capacity, there would be more tiles than
could fit in the frame. The unused portion of the carrying capacity is the per-
centage of the area of the frame that is empty (Krebs 1985).

For example, suppose K = 100 and N = 7. The unused portion of the carry-
ing capacity is [1 - (7/100)] = 0.93. The population is relatively uncrowded
and is growing at 93% of the growth rate of an exponentially increasing pop-
ulation [rN(0.93)]. In contrast, if the population is close to K (N = 98), the
unused carrying capacity of the environment is small: [1 - (98/100)] = 0.02.
Consequently, the population grows very slowly, at 2% of the exponential
growth rate [rN(0.02)]. Finally, if the population should ever exceed carrying
capacity (N > K), the term in parentheses becomes negative, which means
that the growth rate is less than zero, and the population declines towards K.
Thus, density-dependent birth and death rates provide an effective brake on
exponential population growth.
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Figure 2.1 Density-dependent birth and death rates in the logistic model. The graph
illustrates how the per capita rates of birth and death change as a function of crowd-
ing. The population reaches a stable equilibrium (N = K) at the intersection of the
curves, where birth and death rates are equal.

When will the population stop growing? As in the exponential model, the
rate of population growth (dN/dt) is zero when either r or N equals zero. Butin
the logistic model, the population will also stop growing when N = K. This is
illustrated in Figure 2.1, which shows the density-dependent birth and death
functions in the same graph. The two curves intersect at the point N = K and
form a stable equilibrium. The equilibrium is stable because no matter what the
starting size of the population, it will move towards K. If N is less than K, we
are at a point to the left of the intersection of the birth and death curves. In this
region of the graph, the birth rate exceeds the death rate, so the population will
increase. If we are to the right of the intersection point, the death rate is higher
than the birth rate, and the population will decline (see Appendix).

As with the exponential growth model, we can use the rules of calculus to
integrate the growth equation and express population size as a function of
time:

e e

From Equation 2.2, the graph of N versus time for logistic growth is a char-
acteristic S-shaped curve (Figure 2.2). When the population is small, it
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Figure 2.2 Logistic growth curve. The graph of N versus time increases in a charac-
teristic S-shaped fashion when the population begins below carrying capacity.
Above carrying capacity, the curve drops rapidly to the equilibrium point. In this
example, K= 100, and the starting population size is 5 or 200.

increases rapidly, at a rate slightly less than that predicted by the exponen-
tial model. The population grows at its highest rate when N = K/2 (the steep-
est point on the curve), and then growth decreases as the population
approaches K (Figure 2.3a). This is in contrast to the exponential model, in
which the population growth rate increases linearly with population size
(Figure 2.3b). In the logistic model, if the population should begin above K,
Equation 2.1 takes on a negative value, and N will decline towards carrying
capacity.

Regardless of the initial number of individuals (N,), a population growing
according to the logistic model will quickly reach a fixed carrying capacity,
which is determined solely by K. However, the time it takes to reach that
equilibrium is proportional to r; faster-growing populations reach K more
quickly.

Model Assumptions

Because the logistic model is derived from the exponential model, it shares
the assumptions of no time lags, migration, genetic variation, or age struc-
ture in the population. But resources are limited in the logistic model, so we
make two additional assumptions:
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Figure 2.4 Per capita growth rates (1/N)(dN/dt) as a function of population size.
(a) Logistic growth. (b} Exponential growth.

Model Variations

TIME LAGS

The logistic growth model assumes that when another individual is added
to the population, the per capita growth rate decreases immediately. But in
many populations there may be time lags in the density-dependent response.
For example, if a population of gulls increases in size in the fall, density
dependence may not be expressed until the following spring, when females
lay eggs. In a tropical rain forest, density-dependent mortality of mahogany
trees (Swietenia mahogani) may occur in the seedling stage, but density-depen-
dent reproduction may not occur until 50 years later, when the trees first
begin to flower. Individuals do not immediately adjust their growth and
reproduction when resources change, and these delays can affect population
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dynamics. Seasonal availability of resources, growth responses of prey pop-
ulations, and age and size structure of consumer populations can introduce
important time lags in population growth.

How can time lags be incorporated into our model? Suppose there is a
time lag of length T between the change in population size and its effect on
population growth rate. Consequently, the growth rate of the population at
time t (AN/dt) is controlled by its size at time f — 7 in the past (N,_;). Incorpo-
rating this time lag into the logistic growth equation gives:

The behavior of this delay differential equation depends on two factors: (1)
the length of the time lag 1, and (2) the “response time” of the population,
which is inversely proportional to ¥ (May 1976). Populations with fast growth
rates have short response times (1/7).

The ratio of the time lag T to the response time (1/7), or r7, controls popula-
tion growth. If ¥t is “small” (0 < 7 < 0.368), the population increases smooth-
ly to carrying capacity (Figure 2.5a). If 7 is “medium” (0.368 < r7 < 1.570), the
population first overshoots, then undershoots the carrying capacity; these
damped oscillations diminish with time until K is reached (Figure 2.5b). The
exact numerical values for these trajectories are not important. What is impor-
tant is to understand how the behavior of the model changes as 77 is increased.

If r7 is “large” (r7 > 1.570) the population enters into a stable limit cycle,
periodically rising and falling about K, but never settling on a single equilib-
rium point (Figure 2.5¢). The carrying capacity is the midpoint between the
high and low points in the cycle. The cycle is stable because if the population
is perturbed, it will return to these characteristic oscillations. When rt is large,
the time lag is so much longer than the response time that the population
repeatedly overshoots and then undershoots K. The population resembles a
heating system with a faulty thermostat that constantly overheats and then
overcools, never achieving an equilibrium temperature.

Cyclic populations are characterized by their amplitude and period (Figure
2.5¢). The amplitude is the difference between the maximum and the aver-
age population size. It is measured on the y axis of the graph of N vs. t, and
its units are number of individuals. The larger the amplitude, the greater the
population fluctuations. If the amplitude is too large, the population may hit
the “floor” of zero and go extinct. The period is the amount of time it takes
for one complete population cycle to occur. It is measured on the x axis, in
units of time. The longer the period, the greater the amount of time between
population peaks.
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Figure 2.5 Logistic growth curves with a time lag. The behavior of the model
depends on r7, the product of the intrinsic rate of increase and the time lag. (a)
“Small” r7 behaves like the model with no time lag. (b) “Medium” rz generates
dampened oscillations and convergence on carrying capacity. (c) “Large” 77 gener-
ates a stable limit cycle and does not converge on the carrying capacity.

In a logistic model with a time lag, the amplitude of the cycle increases
with increasing values of 7. This makes intuitive sense—if the population is
growing very rapidly, or if the time lag is very long, the population will great-
ly overshoot K before it begins a phase of decline.
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The period of the cycle is always about 47, regardless of the intrinsic rate of
increase. Thus, a population with a time lag of one year can be expected to
reach a peak density every four years. Why should the period of the cycle be
four times as long as the lag? When the population reaches K, it will continue
to increase for a length of time 1 before starting to decrease. The distance from
K to the population peak is about one-quarter of the cycle, so the length of
the entire cycle is approximately 4. This result may explain the observation
that many populations of mammals in seasonal, high-latitude environments
cycle with peaks every three or four years (May 1976; see Chapter 6).

DISCRETE POPULATION GROWTH

We will now explore a model in which population growth is discrete rather
than continuous. A discrete version of the logistic equation is:

This discrete growth logistic equation is analogous to the continuous model
(Equation 2.1) in the same way that Equation 1.4 was analogous to the orig-
inal exponential model (Equation 1.2). Note that the growth rate is the dis-
crete growth factor 7,, described in Chapter 1.

A discrete population growth model has a built-in time lag of length 1.0.
The population size at one time step in the future (N,,;) depends on the cur-
rent population size (N,). In the last section, we saw that the product 77 con-
trols the dynamics when a time lag is present. For the discrete model, the lag
is of length 1.0, so the dynamics depend solely on 7.

If r, is not large, the behavior of this discrete equation is similar to that of its
continuous cousin. At “small” 7, (r; < 2.000), the population approaches K with
damped oscillations (Figure 2.6a). At “less small” r, (2.000 < r,; < 2.449), the pop-
ulation enters into a stable two-point limit cycle. This is similar to the continuous
model, except that the population rises and falls to sharp “points,” rather than
following a smooth curve. The points in the discrete model correspond to peaks
and valleys of the cycle (Figure 2.6b). Between an r, of 2.449 and an r, of 2.570,
the population grows with more complex limit cycles. For example, a four-point
limit cycle has two distinct peaks and two distinct valleys before it starts to
repeat. The number of points in the limit cycle increases geometrically (2, 4, 8,
16, 32, 64, etc.) as the value of 7, is increased in this interval (Figure 2.6¢).

But if 7, is larger than 2.570, the limit cycles break down, and the popula-
tion grows in a complex, nonrepeating pattern known as chaos (Figure 2.6d).
Mathematical models of chaos are important in many areas of science, from
the description of turbulent flow to the prediction of major weather patterns.
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MODEL VARIATIONS

<« Figure 2.6 The behavior of the discrete logistic growth curve is determined by the
size of 7,. (a) “Small” 7, generates damped oscillations (r; = 1.9). (b) “Less small” 7,
generates a stable two-point limit cycle (r; = 2.4). (c) “Medium” 7, generates a more
complex four-point limit cycle (r; = 2.5). (d) “Large” r, generates a chaotic pattern of
fluctuations that appears random (v, = 2.8).

Population biologists were among the first to appreciate that simple discrete
equations may generate complex patterns (May 1974b). What is interesting
about chaos is that seemingly random fluctuations in population size can
emerge from a model that is entirely deterministic. Indeed, the track of a
chaotic population may be so complex that it is difficult to distinguish from
the track of a stochastic population.

However, chaos does not mean stochastic, or random, change. The fluctu-
ations in a chaotic population have nothing to do with chance or random-
ness. Once the parameters of the model are specified (K, r;, and Ny), the same
erratic population track will be produced each time we run the model. The
source of these erratic fluctuations is the density-dependent feedback of the
logistic equation, combined with the built-in time lag of the discrete model. A
characteristic of a chaotic population is sensitivity to initial conditions. If we
alter the starting conditions, say, by changing the initial population size (N),
the populations will diverge more and more as time goes on (Figure 2.7).

In contrast, a truly stochastic population fluctuates because one or more
of its parameters (r; or K) changes with each time step. In a stochastic model,
if we alter the starting population slightly, but retain the same pattern of vari-
ation in 7, or K, the two population tracks will be slightly different, but they
will not diverge as in Figure 2.7. In the next section we explore stochastic
models in which the carrying capacity varies with time.
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Figure 2.7 Divergence of population tracks with chaos. Both populations followed
the same logistic equation, but the starting N for one of the populations was 50 and
the other was 51. Note that, as more time passes, the two populations begin to
diverge from one another.
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RANDOM VARIATION IN CARRYING CAPACITY

In our analysis of environmental stochasticity (Chapter 1), we assumed that
resources were unlimited, but that r varied randomly with time. For the logis-
tic model, we will now assume that r is fixed, but that the carrying capacity
varies randomly with time. Random variation in K means that the maximum
population size that the environment can support changes unpredictably
with time. How does this variation in resources affect the behavior of the
logistic model? There are several mathematical approaches to the problem
(May 1973; Roughgarden 1979), none of which yields a simple answer.

When r varied randomly in our exponential model, we found that the
average population size was the same as in the deterministic model (N; =
Nge™). So, you might reason that the average population size in the logistic
model should approximate the average carrying capacity (K). But this is not
the case. Instead, N will always be less than K. Why should this be so? When
a population is above K, it declines faster than a population that is increas-
ing from a corresponding level below K (see Problem 2.4). This asymmetry
is reflected in Figure 2.2, which shows that the population tracks above and
below carrying capacity are not mirror images of one another. If the carrying
capacity is described by its mean (K) and variance (6%) , a rough approxima-
tion to the average population size is (May 1974a):

Thus, the more variable the environment, the smaller the average population
size. The pattern of population fluctuations also depends on r (Levins 1969).
Populations with large r are very sensitive to changes in K, and they will tend
to track these fluctuations quite closely. Consequently, the average popula-
tion size will be only slightly less than the average carrying capacity. In con-
trast, populations with small r are relatively sluggish and will not exhibit
large increases or decreases (Figure 2.8); N will be somewhat smaller than
for populations with large r.

PERIODIC VARIATION IN CARRYING CAPACITY

Instead of random fluctuations in carrying capacity, suppose K varies repeat-
edly, in a cyclic fashion. Cyclic fluctuations in carrying capacity probably
characterize many populations in seasonal temperate latitudes, and can be
described with a cosine function (May 1976):
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Figure 2.8 Logistic population growth with random variation in carrying capacity.
Note that the population with the larger growth rate (r = 0.50) tracks the fluctua-

tions in carrying capacity, whereas the population with the small growth rate (» =
0.10) is less variable and does not respond as quickly to fluctuations in resources.

Here, K, is the carrying capacity at time ¢, k, is the mean carrying capacity, k
is the amplitude of the cycle, and c is the length of the cycle. As t increases,
the cosine term in parentheses varies cyclically from —1 to 1. Thus, during a
single cycle of length ¢, the carrying capacity of the environment varies from
a minimum of k;—k; to a maximum of k; + k;.

How does this cyclic variation in carrying capacity affect population
growth? The length of the carrying capacity cycle functions as a kind of time
lag, so once again, the behavior of the model depends on rc. If rc is small
(<< 1.0), the population tends to “average” the fluctuations in the environ-
ment and persists at roughly:

Thus, if rc is small, N is less than K, and the reduction is greater when the
amplitude of the cycle is large; both patterns are similar to the results for a
population in which K varies stochastically. If rc is large (>> 1.0), the popu-
lation tends to track the fluctuations in the environment:

although at a value slightly less than the actual carrying capacity (Figure 2.9).
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Figure 2.9 Logistic growth with periodic variation in the carrying capacity. The car-
rying capacity of the environment varies according to a cosine function. As with
random variation, the population with the large growth rate (r = 10) tends to track
the variation (a), and the population with the small growth rate (v = 0.2) tends to
average it (b). The dashed line indicates K. (From May 1976.)

In conclusion, both stochastic and periodic variation in carrying capacity
reduce populations, and the more variable the environment, the lower the
average population size. In a variable environment, populations with large
7, such as most insects, may be expected to track variation in carrying capac-
ity, whereas populations with small 7, such as large mammals, may be expect-
ed to average the environmental variation and remain relatively constant.
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Empirical Examples

SONG SPARROWS OF MANDARTE ISLAND

Mandarte Island is a rocky, 6-hectare island off the coast of British Columbia.
The island is home to a population of song sparrows (Melospiza melodia) that
has been studied for many decades (Smith et al. 1991). On average, only one
new female migrant joins this population each year, so most of the changes in
population size are due to local births and deaths. Over the past 30 years, the
population has varied between 4 and 72 breeding females and between 9 and
100 breeding males. The sparrow population of Mandarte Island does not
conform to a simple logistic growth model; population size is variable and
there have been periods of increase followed by rapid declines (Figure 2.10).
Some of these, such as the crash in 1988, were caused by an unusually cold
winter and an increased death rate. Other declines were not correlated with
any obvious change in the environment.
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Figure 2.10 Population size of the song sparrow (Melospiza melodia) on Mandarte
Island. (After Smith et al. 1991.)
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Figure 2.11 Density dependence in the Mandarte Island song sparrow (Melospiza
melodia) population. As the population becomes more crowded (a) the proportion of
nonterritorial “floater” males increases; (b) the number of surviving young pro-
duced per female decreases; (c) juvenile survival decreases. (After Arcese and Smith
1988 and Smith et al. 1991.)
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Although this population is clearly buffeted by density-independent
changes, there is good evidence of underlying density dependence. Male
song sparrows defend territories that determine their breeding success, but
limited food resources and space prevent many males from ever establishing
territories. These nonterritorial “floaters” are behaviorally submissive indi-
viduals. Their proportion increased in a density-dependent fashion as the
population became more crowded (Figure 2.11a). When the resident territory
holders were experimentally removed, floater males quickly took over their
territories, so the total breeding population size remained relatively constant.

Density dependence is also seen in the number of surviving young pro-
duced per female (Figure 2.11b), and in the survival of juveniles (Figure 2.11c),
both of which decreased as the population size increased. Experimental
studies confirmed that food limitation was the controlling factor: when food
levels for sparrows were artificially enhanced, female reproductive output
increased fourfold (Arcese and Smith 1988). Thus, both territoriality and
food limitation generated density-dependent birth and death rates in song
Sparrows.

Nevertheless, although density dependence has the potential to control
population sizes, the risk of extinction for Mandarte Island sparrows proba-
bly comes from unpredictable environmental catastrophes and other density-
independent forces. Somewhat paradoxically, it is these density-independent
fluctuations that allow us to detect density dependence, because they push
the population above or below its equilibrium and reveal the underlying
dynamics of birth and death rates.

POPULATION DYNAMICS OF SUBTIDAL ASCIDIANS

Ascidians, or “sea squirts,” are filter-feeding invertebrates that live attached
to pier pilings and rock walls. These animals are important components of
subtidal “fouling” communities throughout the world. Ascidians are actual-
ly primitive chordates that disperse with a sexually produced tadpole larva.
The perennial ascidian Ascidia mentula has been the subject of a long-term
study of population dynamics on vertical rock walls off the Swedish west
coast (Svane 1984).

Six populations were monitored continually for 12 years with photographs
of permanent plots. At sheltered sites within a fjord, density was highest in
shallow plots; at exposed stations, density was highest in deep-water plots.
At all sites, populations fluctuated considerably (Figure 2.12), in contrast to
the predictions of the basic logistic model. Mortality was primarily due to
“bulldozing” by sea urchins and temperature fluctuations. These factors
seemed to operate in a density-independent fashion, because there was no
relationship between mortality rate and population size (Figure 2.13a). In
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Figure 2.12 Population density of ascidians (Ascidia mentula) at six subtidal sites off
the coast of Sweden. Population densities are greater in shallow water than in deep,

except at the exposed site. Note the use of a logarithmic scale for the y axis, which
diminishes the appearance of population fluctuations. (After Svane 1984.)

contrast, reproduction (as measured by larval recruitment) was density-
dependent and decreased at high densities. At low densities, there was evi-
dence of an Allee effect: recruitment actually increased with population den-
sity until a density of approximately 100 animals per square meter was
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Figure 2.13 (a) Density-independent mortality rates. The mortality rate of ascidians
(Ascidia mentula) at the six population sites appears to be independent of population
size. (b) Density-dependent recruitment rates. The rate of recruitment of new juve-
niles into ascidian populations is density-dependent and is lower in more dense
populations. Note the appearance of a possible Allee effect, as recruitment is also
decreased at sites with very low abundance. (After Svane 1984.)

reached (Figure 2.13b). Possible explanations for this Allee effect include the
behavioral attraction of larvae to established adults and entrapment of lar-
vae by local water currents.

Like the Mandarte Island sparrows, these ascidians showed some evidence
of underlying density dependence, although the population never reached a
steady carrying capacity. Both the ascidian and sparrow populations were
affected by temperature fluctuations, although these effects seemed more
subtle and long-term for the ascidians. Unlike the isolated sparrow popula-
tion, the ascidian populations were potentially linked by larval dispersal
between sites, so that a realistic model of population dynamics might be
especially complex (see Chapter 4).

LOGISTIC GROWTH AND THE COLLAPSE OF FISHERIES POPULATIONS

How many tons of fish should be harvested each year to maximize long-term
yield? This optimal yield problem has been very important to commercial
fisheries because of the huge amounts of money involved and because over-
fishing has been a problem since at least the 1920s, when commercial stocks
of many species started to decline. The logistic growth curve provides a sim-
ple, though often unpopular, prescription for optimal fishing strategies.

The optimal strategy is the one that maximizes the population growth rate,
because this rate determines how quickly fish can be removed from the pop-
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Figure 2.14 Relationship between fishing effort and total catch for the Peruvian
anchovy (Engraulis ringens) fishery. Each point represents the fishing catch and effort
for a particular year. The data include fishing effort by humans and fish catches by
seabird populations. The parabola is drawn by fitting the logistic model to data
from Boerema and Gulland (1973). (After Krebs 1985.)

ulation while still maintaining a constant stock for future production. If a pop-
ulation is growing according to the logistic equation, maximum population
growth rate occurs if the population is held at K/2, half the carrying capacity
(Figure 2.3a). Two other strategies are guaranteed to produce low yields. The
first is to be extremely conservative and remove very few animals at each har-
vest. This keeps the standing stock large, but the yield is low because the pop-
ulation is close to carrying capacity and grows slowly. The other strategy is to
harvest the population down to a very small size. This also produces low yield
because there are so few individuals left to reproduce.

Unfortunately, this latter strategy of overdepletion has been followed by
all the world’s fisheries. Figure 2.14 shows the yearly catch of Peruvian
anchovy (Engraulis ringens) fitted to the predictions of a simple logistic model.
The model predicts a maximum sustained yield of approximately 10 to 11
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Figure 2,15 Total catch for the Peruvian anchovy (Engraulis ringens) fishery from
1955 to 1981. This was the largest fishery in the world until its collapse in 1972.
(After Krebs 1985; unpublished data from M. H. Glanz.).

million metric tons per year. The annual catch was close to this sustained
maximum from 1964 to 1971. In 1972, the Peruvian anchovy fishery col-
lapsed, in part due to overfishing, and in part due to an El Nifio event, in
which a warm tropical water mass moved off the coast of Peru and greatly
reduced productivity. Although fishing was reduced to allow stocks to recov-
er, anchovy populations have never reached their former abundance and fish-
ing yields remain low (Figure 2.15). Increasingly sophisticated technology
and large factory-ships have depleted world stocks of many fish populations
to the point where the industry itself is doomed to economic collapse. In 1989,
for example, the cost of operating the world’s 3 million fishing vessels was
estimated at $92 billion, whereas the total catch was worth only $72 billion
(Pitt 1993). The disappearance of human societies that depend on fishing is
also inevitable.

The situation can only be remedied by worldwide restrictions on fishing
and short-term reductions in catch. Unfortunately, this will not be easy
because each individual fishing vessel tries to maximize its short-term yield
by intensive fishing. Migratory fish populations do not obey political bound-
aries, making international policies difficult to enforce. The problem of short-
term versus long-term profits in the exploitation of natural resources is
known as “the tragedy of the commons” (Hardin 1968).



